Contact geometry of the Pontryagin maximum principle

نویسنده

  • Tomoki Ohsawa
چکیده

This paper gives a brief contact-geometric account of the Pontryagin maximum principle. We show that key notions in the Pontryagin maximum principle—such as the separating hyperplanes, costate, necessary condition, and normal/abnormal minimizers—have natural contactgeometric interpretations. We then exploit the contact-geometric formulation to give a simple derivation of the transversality condition for optimal control with terminal cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-axis optimal control of satellite attitude based on Ponteryagin maximum ‎principle‎

A long time ago, since the launch of the first artificial satellite in 1957, controling attitude of satellites has been considered by the designers and engineers of aerospace industry. Considering the importance of this issue various methods of control in response to this need have been presented and analyzed until now. In this paper, we propose and analyze a three-axis optimal control on the s...

متن کامل

The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle

We give a simple proof of the Maximum Principle for smooth hybrid control systems by reducing the hybrid problem to an optimal control problem of Pontryagin type and then by using the classical Pontryagin Maximum Principle.

متن کامل

A Short Proof of the Pontryagin Maximum Principle on Manifolds

Applying the Tubular Neighborhood Theorem, we give a short and new proof of the Pontryagin Maximum Principle on a smooth manifold. The idea is as follows. Given a control system on a manifold M , we embed it into an open subset of some Rn, and extend the control system to the open set. Then, we apply the Pontryagin Maximum Principle on Rn to the extended system and project the consequence to M ...

متن کامل

Optimal Gait Synthesis of a Seven-Link Planar Biped

In this paper, we carry out the dynamics-based optimization of sagittal gait cycles of a planar seven-link biped using the Pontryagin maximum principle. Special attention is devoted to the double-support phase of the gait, during which the movement is subjected to severe limiting conditions. In particular, due to the fact that the biped moves as a closed kinematic chain, overactuation must be c...

متن کامل

Sub-Riemannian Geometry and Geodesics in Banach Manifolds

In this paper, we define and study sub-Riemannian structures on Banach manifolds. We obtain extensions of the Chow-Rashevski theorem for exact controllability, and give conditions for the existence of a Hamiltonian geodesic flow despite the lack of a Pontryagin Maximum Principle in the infinite dimensional setting.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2015